1-3 ニューラルネットワーク『ゼロから作るDeep Learning』
hr.icon
目次
3.1 パーセプトロンからニューラルネットワークへ
3.1.1 ニューラルネットワークの例
3.1.2 パーセプトロンの復習
3.1.3 活性化関数の登場
3.2.3 ステップ関数のグラフ
3.2.4 シグモイド関数の実装
3.2.5 シグモイド関数とステップ関数の比較
3.3.1 多次元配列
3.3.2 行列の内積
3.3.3 ニューラルネットワークの内積
3.4 3層ニューラルネットワークの実装
3.4.1 記号の確認
3.4.2 各層における信号伝達の実装
3.4.3 実装のまとめ
3.5 出力層の設計
3.5.2 ソフトマックス関数の実装上の注意
3.5.3 ソフトマックス関数の特徴
3.5.4 出力層のニューロンの数
3.6 手書き数字認識
3.6.2 ニューラルネットワークの推論処理
3.7 まとめ